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Abstract—This work studies the herdability of networked
systems. As an extension of classical controllability, herdability
represents the ability of a system to drive its states to a
specific subset in the state space. Particularly, a leader-follower
signed network is considered, where leader nodes endowed
with external controls are able to influence the states of
the follower nodes. Weighted positive and negative edges are
allowed to capture cooperative and competitive interactions
among nodes. To enable network herdability, leader group
selection is investigated in this work, i.e., identifying a small
subset of nodes as leaders such that the resulting leader-
follower network is herdable by the selected leaders. Focusing
on structurally balanced signed networks, graph walks are
leveraged to facilitate leader selection for network herdability.
The cases of selecting leaders from the same partitioned set
and different sets are considered, which are then extended to a
special class of weakly balanced signed graphs. Examples are
provided to illustrate the developed leader selection approaches.

I. INTRODUCTION

Controllability of leader-follower networks, i.e., the ca-
pability of driving followers’ states by leaders via external
controls, has attracted growing research interest in multi-
agent systems [1], brain networks [2], and social networks
[3]. Among these applications, most existing works focus on
ensuring fully controllable networks. That is, all followers’
states can be driven to arbitrary states by the selected leaders.
However, requiring a network to be fully controllable can
be restrictive and unnecessary in practical applications. For
example, when controlling the humidity of rooms in a smart
building, the rooms are often required to maintain a positive
humidity. A fully controllable network is unnecessary in this
case, since driving the room humidity (i.e., system states)
to a negative value does not make any physical sense. In-
stead, it is of more practical significance to consider relaxed
controllability, i.e., the capability of driving followers’ states
to a specific subset, rather than the entire state space as
in classical controllability. Such a relaxed controllability
is referred to as herdability and this work is particularly
motivated to develop leader selection algorithms for the
herdability of leader-follower networks.

Based on the interactions, networked systems can be
classified as either cooperative or non-cooperative networks.
Cooperative networks are commonly modeled by unsigned
graphs (i.e., graphs with only positive edge weights), where
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positive weights indicate cooperative relationships between
network units. Average consensus is an example of cooper-
ative networks, where agents collaborate to achieve group
consensus [4]. Non-cooperative networks are often modeled
by signed graphs, which admit both positive and negative
edge weights to represent cooperative and antagonistic inter-
actions [5]. For instance, signed graphs with positive/negative
weights can be used to model friend/adversary relationship
in social networks [6] and collaborative/competitive rela-
tionship in multi-agent systems [7]. Owing to tremendous
application potential of signed graphs, this work is further
motivated to investigate the herdability of leader-follower
signed networks.

Investigating leader group selection for the controllability
of unsigned networks has generated a substantial research
volume. Structural controllability [8]–[10], graph-theoretic
approaches [11]–[13], and topological properties [14]–[16],
were extensively explored to facilitate leader group selection
to ensure the controllability of unsigned networks. When
considering signed networks, the controllability was studied
in the works of [17]–[20], and the leader selection algorithms
ensuring network controllability were investigated in the
works of [21]–[23]. However, all of the aforementioned
results focus on the characterization of classical controllabil-
ity. Leader group selection for network herdability remains
largely unknown.

The idea of herdability was introduced in [24], in which
necessary and sufficient conditions for herdable systems
were presented. The results of [24] were then extended
to characterize herdability for positive complex networks
in [25] and signed linear systems in [26]. In our recent
works of [27] and [28], herdability of signed networks
was characterized from topological perspectives. Inspired by
the aforementioned works of [24]–[28], this work advances
current knowledge by considering leader group selection for
network herdability. That is, given a signed network, we are
concerned with identifying a small subset of nodes as leaders,
such that the resulting leader-follower network is herdable
by the selected leaders. Specifically, since graph walks are
closely related to the controllable space of the system, graph
walks are exploited to facilitate leader selection for the
herdability of structurally balanced signed networks. The
cases of selecting leaders from the same partitioned set
and different sets are considered, which are then extended
to a special class of weakly balanced signed networks.
Examples are provided to elaborate the developed leader
selection approaches. Compared with existing literature, this
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work is one of the first attempts to consider leader selection
for network herdability. Although only structurally balanced
networks are investigated, it paves the way to leader selection
for more general signed networks.

II. PROBLEM FORMULATION

Consider a network modeled by a weighted undirected
graph G = (V, E ,A), where V = {v1, . . . , vn} denotes the
node set and E ⊆ V × V denotes the edge set. A graph
is connected, if there exists a series of consecutive edges
connecting any two nodes. The interactions between nodes
are described by the weighted adjacency matrix A = [aij ] ∈
Rn×n, where aij 6= 0 if (vj , vi) ∈ E and aij = 0 otherwise.
No self-loop is considered, i.e., aii = 0,∀i = 1, . . . , n. Let
R+ and R− represent the set of positive and negative real
numbers, respectively. In this work, the weight aij ∈ R is
allowed to take real numbers, where aij ∈ R+ and aij ∈ R−
represent cooperative and competitive interactions between
vi and vj , respectively. Throughout the rest of this work,
an edge (vj , vi) is called positive if aij ∈ R+, and negative
otherwise. The i th row and j th column of A are denoted by
Ai,: and A:,j , respectively.

A. Network Herdability

Let x (t) = [x1(t), . . . , xn(t)]T ∈ Rn denote the stacked
system states1 of the network G, where each entry xi(t) ∈ R
represents the state of node vi . It is assumed that a subset
Vl ⊆ V of m nodes, referred to as leaders in the network,
can be endowed with external controls. The rest nodes
Vf = V\Vl are referred to as followers with Vl ∩ Vf = ∅.
Without loss of generality, the leaders’ and the followers’
indices are assumed to be Vl ={1, . . . ,m} and Vf ={m +
1, . . . , n}.

Since linear dynamics dependent on the adjacency matrix
of the underlying graph has found many applications in [29]–
[32], this work considers

ẋ(t) = Ax(t) +Bu(t), (1)

where A is the adjacency matrix of G, B = [e1 · · · em] ∈
Rn×m is the input matrix with basis vectors ei , i =1, . . . ,m,
indicating that the i th node is a leader, and u(t) ∈ Rm is
the external control.

The herdability of the system in (1) is defined as follows.

Definition 1 (Network Herdability [24]). A networked sys-
tem with dynamics in (1) is herdable if, for any x (0) ∈ Rn,
the system state x (t) can be driven by a control input u (t)

to the set Hd =
{
x =

[
x1 . . . xn

]T ∈ Rn : xi ≥ d
}

in
finite time, where d is an arbitrary positive threshold.

Definition 1 indicates that a network is herdable if its states
can be driven to a specific subset Hd of the state space. Recall
that the controllability matrix C =

[
B AB · · · An−1B

]
indicates the controllable subspace of a system. If C has

1Generalizations to multi-dimensional system states (e.g., xi ∈ Rm) are
expected to be trivial via the matrix Kronecker product.

full row rank, the system in (1) is completely controllable.
The following lemma shows how the herdability of a system
relates to the controllability matrix.

Lemma 1. [24] A networked system with dynamics in (1)
is herdable to Hd if and only if there exists an element-
wise positive vector k ∈ Im (C), where Im (·) represents the
image space of a matrix.

Lemma 1 indicates that network herdability depends on
the image space of the controllability matrix, which is closely
related to the adjacency matrix A and the input matrix B.
Given a network with known adjacency matrix, if a proper set
of nodes is selected as leaders (i.e., the input matrix B is well
designed), it is possible to drive system states to an arbitrary
Hd via external controls. Motivated by this observation, the
objective of this work is to develop leader group selection
algorithms for ensured network herdability.

B. Graph Walks

In this work, graph walks will be used as a main tool to
characterize network herdability and facilitate leader group
selection. A graph walk is defined as an alternating sequence
of edges and the length of a walk is the number of edges.
A walk of length k is referred to as a k -walk. The weight
of a k -walk is defined as the product of the edge weights.
Different from the commonly used graph path that only
contains distinct edges, repeated edges are allowed in graph
walks. Thus, the minimum walk between two nodes is the
walk of the smallest length.

Consider a weighted signed graph G = (V, E ,A), where
A is the weighted adjacency matrix. Let Ak denote the kth
power of A. Each entry of Ak is determined as [Ak ]ij ,
which is the sum of the weights of all k-walks from vj to vi
[33]. When considering the product AkB, the entry [AkB]ij
indicates the sum of the weights of all k -walks from the
leader vj ∈ Vl to a node vi ∈ V, which motivates the use
of graph walks to characterize the controllable subspace via
the controllability matrix C and identify leader groups for
network herdability.

III. HERDABILITY OF STRUCTURALLY BALANCED
SIGNED NETWORKS

Due to the existence of positive and negative weights,
structural balance is a topological feature associated with
signed graphs. Exploring structural balance has generated
fruitful results regarding the relationships between network
controllability and its topological structures [34]. Motivated
by this topological feature, we focus on developing leader
group selection algorithms for the herdability of structurally
balanced signed graphs. In particular, standard structurally
balanced graphs are considered first, which will then be
extended in Sec. IV to a class of special signed graphs,
namely weakly balanced signed graphs.

Definition 2 (Structural Balance [5]). A signed graph G =
(V, E ,A) is structurally balanced if the node set V can be
partitioned into V1 and V2 with V1∪V2 = V and V1∩V2 = ∅,
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where aij > 0 if vi, vj ∈ Vq , q ∈ {1, 2}, and aij < 0 if
vi ∈ Vq and vj ∈ Vr, q 6= r, and q, r ∈ {1, 2}.

Definition 2 indicates that, in structurally balanced graphs,
vi and vj are positive neighbors if they are from the same
partitioned set, and negative neighbors from different sets.
Based on Definition 2, leader group selection from one set
(i.e., either V1 or V2) and two sets (i.e., V1 and V2) are
discussed in Sec. III-A and Sec. III-B, respectively.

A. Selecting Leaders in One Set

When leaders are all in the same partitioned set, systems
evolving over structurally balanced graphs have the following
properties.

Lemma 2. [26] If the system in (1) evolves over a connected
signed graph G = (V, E ,A) and G is structurally balanced,
its controllability matrix C is sign definite.

Let Ci,: denote the ith row of C. Lemma 2 indicates that,
for any two nodes vp ∈ V1 and vq ∈ V2, the entries of
Cp,: are all non-negative and the entries of Cq,: are all non-
positive, given that the leaders are all in V1.

Assume |V1| = n1 and |V2| = n2 with n1 + n2 = n.
An intuitive leader group selection method is presented as
follows.

Proposition 1. Consider a leader-follower system in (1)
evolving over a signed graph G. Suppose G is connected
and structurally balanced with nodes grouped into V1 and
V2 as in Definition 2. If the nodes in either V1 or V2 are
all selected as leaders, the system in (1) is herdable by the
selected leaders.

Proof: Without loss of generality, assume the nodes in
V1 are all selected as leaders, i.e., there are m leaders where
m = n1 and n2 followers. The controllability matrix C of
the system in (1) can be written as

C =
[
B| AB ... An−1B

]
=

[
Im×m
0n2×m

∣∣∣∣ ∗Ξ
]
,

(2)
where ∗ ∈ Rm×(n−1)m and Ξ ∈ Rn2×(n−1)m . Since G is
connected, any two nodes are connected within (n−1)-walks.
As a result, the entries in ∗ and Ξ represent the weights of
walks from leaders to leaders and from leaders to followers,
respectively.

Based on Lemma 1, the system in (1) is herdable if
and only if there exists an element-wise positive vec-
tor k ∈ Im (C). That is, there exists a vector δ =[
δ1 . . . δnm

]T ∈ Rnm such that k = Cδ ∈ Rn is
element-wise positive. The rest of the proof is to show the
existence of such a vector δ.

Note that Ξ only contains the weights of walks from
leaders to followers. By Lemma 2, the entries of ∗ are non-
negative and the entries of Ξ are non-positive. In addition,
since the graph is connected and any follower can be reached
by a leader via walks, no rows in Ξ are all zeros. Therefore,
there exists δi ∈ R−, i = m + 1, . . . , nm , such that the

last n2 entries in k are guaranteed to be positive. Due to the
identity matrix Im×m , there always exist sufficiently large
δi ∈ R+, i = 1, . . . ,m, such that δi >

∑nm
j=m+1 Ci,jδj ,

which indicates the first m entries in k are guaranteed to be
positive. Consequently, due to the existence of a vector δ,
the system in (1) is herdable when the nodes in V1 are all
selected as leaders.

Proposition 1 offers a straightforward way to select leaders
for the herdability of structurally balanced networks. This
is particularly useful if the ratio between |V1| and |V2| is
sufficiently small, since the entire network can be effectively
herded by a small set of leaders. However, if the partitioned
sets V1 and V2 are approximate the same size, Proposition 1
can result in a large number of leaders.

Remark 1. Let the nodes in V1 with 1-walk neighbors in V2

be referred to as boundary nodes of V1. Boundary leaders
are referred to as leaders that are boundary nodes. Following
similar proof of Proposition 1, it can be shown that the
system in (1) remains herdable, if the selected leader group
satisfies that the followers in V1 are all within 1-walk from
at least one non-boundary leader.

The following theorem presents how the leader selection
algorithm in Proposition 1 can be improved by reducing
the leader group size based on graph distances between
followers and leaders. Suppose there are m < n1 leaders
in V1 and the rest nodes are followers in V1 and V2. Let
P aij , i ∈{1, . . . ,m}, j ∈ {m+1, . . . , n}, denote the distance
(i.e., the length of the minimum walk) from a leader vi to
a follower vj in Va, {a} ∈ {1, 2}. The shortest distance
from a follower vj in Va to the leader group is denoted
by P aj = min

{
P aij , i ∈{1, . . . ,m}

}
. Similarly, let P̄ aj =

max
{
P aij , i ∈{1, . . . ,m}

}
denote the longest distance from

a follower vj in Va to the leader group.

Theorem 1. Consider a leader-follower system in (1) evolv-
ing over a connected structurally balanced signed graph
G with nodes grouped into V1 and V2. Suppose there are
m < n1 leaders in V1. The system in (1) is herdable if, for
any followers vi ∈ V1 and vj ∈ V2, the selected leaders
satisfy P̄ 1

i < P 2
j .

Proof: Following Proposition 1, assume
the leaders are only selected from V1. Let
P̄ 1 = max

{
P̄ 1
i , i ∈{m+ 1, . . . , n1}

}
denote the maximum

distance (in terms of walks) from followers to the leader
group in V1. Given m leaders in V1 satisfying the proposed
rule, the system controllability matrix C can be written as

C =
[
B| AB · · · AP̄ 1

B
∣∣∣ ... An−1B

]
=

 Im×m
0(n1−m)×m

0n2×m

∣∣∣∣∣∣
∗m×mP̄ 1

Λ
0n2×mP̄ 1

∣∣∣∣∣∣
...
...
∆

 , (3)

where Λ ∈ R(n1−m)×mP̄ 1

and ∆ ∈ Rn2×m(n−1−P̄ 1).
Similar to Proposition 1, the rest of the proof is to show
the existence of a vector δ =

[
δ1 . . . δnm

]T ∈ Rnm
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Figure 1. Examples of leader group selection in one set for network herdability, where the selected leaders are marked as solid nodes. Figures (a), (b),
and (c) follow the developed leader selection algorithms in Proposition 1, Remark 1 and Theorem 1 respectively.

such that k = Cδ ∈ Rn is element-wise positive.
First, due to the identity matrix Im×m, there always exist

sufficiently large δi ∈ R+, i = 1, . . . ,m, such that the first
m entries in k are guaranteed to be positive.

Since the entries of Λ represent the sum of weight within
P̄ 1 walks from leaders to the n1 −m followers in V1, these
entries are guaranteed to be non-negative, as the nodes in
V1 are positive neighbors. Clearly, there exist sufficiently
large δi ∈ R+, i = m + 1, . . . ,m

(
P̄ 1 + 1

)
, such that the

corresponding entries in k are guaranteed to be positive. In
addition, if the selected leaders satisfy P̄ 1

i < P 2
j for any

followers vi ∈ V1 and vj ∈ V2, no followers in V2 are
within P̄ 1 walks to the leader group. As a result, one has
the zero matrix 0n2×mP̄ 1 .

By Lemma 2, the entries of ∆ are non-positive, since
they correspond to the weights of walks from leaders to
the followers in V2. There always exist δi ∈ R−, i =
m
(
P̄ 1 + 1

)
+ 1, . . . ,mn, such that the last n2 entries of k

are positive. Therefore, due to the existence of a positive
element-wise vector k ∈ Im (C), the system is herdable
based on Lemma 1.

Theorem 1 only requires that the longest distance from the
followers in V1 to the leader group is less than the shortest
distance from the followers in V2 to the leader group. Note
that the walks among nodes can be computed first using
existing algorithms [33]. The leaders can then be selected
following the condition in Theorem 1.

To illustrate the leader selection rules above, the following
example is provided.

Example 1. Consider a structurally balanced signed network
G with the partitioned sets V1 = {v1, v2, v3, v4, v5} and V2 =
{v6, v7, v8, v9, v10, v11, v12}. Following the leader selection
rules in Proposition 1, Fig. 1 (a) shows a herdable network
with all nodes in V1 selected as the leader group. Fig. 1
(b) and (c) illustrate the leader selection rules developed in
Remark 1 and Theorem 1, respectively.

B. Selecting Leaders in Two Sets

This section considers selecting leaders from both V1 and
V2 in a structurally balanced graph.

Theorem 2. Consider a leader-follower system in (1) evolv-
ing over a connected structurally balanced signed graph G
with nodes grouped into V1 and V2. The system in (1) is

herdable, if the boundary nodes of V1 and V2 are all selected
as leaders.

Proof: Suppose there are m boundary nodes. Assume
there are m1 leaders and q1 followers in V1, and m2 leaders
and q2 followers in V2, where m1 + m2 = m. The leader
and follower group in V1 and V2 are represented as V1

l , V1
f ,

V2
l , and V2

f , respectively.
To facilitate the analysis, the followers are grouped based

on the distance to the leaders within the same partitioned
set. Specifically, the followers in V1

f that are k walks away
from the leader group V1

l are grouped as f1
k , and the group

size is
∣∣f1
k

∣∣ such that
∑
k

∣∣f1
k

∣∣ = q1. The followers in V2
f

are defined similarly by f2
k and

∣∣f2
k

∣∣ where
∑
k

∣∣f2
k

∣∣ = q2.
Let p and q be the longest distance from followers to leaders
within V1 and V2, respectively.

Based on the grouped followers, the system controllability
matrix C can be written as

C =
[
B AB ... An−1B

]

=



Im×m ∗ ∗ · · · ∗ ∗ ∗
0 φ1

1 ∗ · · · ∗ ∗ ∗
... 0 φ2

1 · · · ∗ ∗ ∗
...

... 0
. . . ∗ ∗ ∗

...
...

... · · · φ1
p ∗ ∗

0 0 0 · · · 0 φ2
q ∗


,

(4)

where φ1
i ∈ R|f

1
i |×m1 , i = 1, . . . , p, represent the sum of

weights of all i-walk from V1
l to V1

f , φ2
j ∈ R|f

2
j |×m2 , j =

1, . . . , q, represent the sum of weights of j-walk from V2
l to

V2
f , 0 represent zero matrices with appropriate dimensions,

and ∗ represent matrices of no interest. By Lemma 1, the
rest of the proof is to show the existence of a vector δ =[
δ1 . . . δnm

]T ∈ Rnm such that k = Cδ ∈ Rn is
element-wise positive.

First, due to the identity matrix Im×m, there always exist
sufficiently large δi ∈ R+, i = 1, . . . ,m, such that the first
m entries in k are guaranteed to be positive. The nonzero
entries of φ1

1 indicate that the followers in f1
1 ⊆ V1

f can be
reached by the leaders in V1

l within 1-walk. Since they are
in the same V1, the nonzero entries of φ1

1 are all positive.
Note that the followers in f1

i , i > 1, can not be reached by
the leaders in V1

l within 1-walk, which gives rise the zero
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Figure 2. Example of selecting leaders from boundary nodes. The leaders
are marked as solid nodes.

matrices. Similarly, the nonzero entries of φ2
1 are positive

due to the fact that the followers in f2
1 ⊆ V2

f can be reached
by the leaders in V2

l within 1-walk and they are in the same
V2. Following similar argument for the rest followers, it can
be shown the nonzero entries of φ1

i , i = 2, . . . , p, and φ2
i ,

i = 2, . . . , q, are all positive. Consequently, there always
exist proper design δi ∈ R+, i = m + 1, ...mn, such that k
is element-wise positive, which indicates the network G is
herdable.

Example 2. Reconsider the structurally balanced signed
graph in Example 1. The idea of selecting boundary nodes
as leaders is illustrated in Fig. 2.

Remark 2. Theorem 1 and 2 discuss rules of selecting leaders
for network herdability. In practice, it is often of interest
to modify the network topology by removing or adding
edges while preserving network herdability. As an immediate
extension of Theorem 1, if new edges are added or existing
edges are removed between followers in V2, the system in
(1) remains herdable by the selected leaders as long as the
structural balance is preserved. Similarly, as an extension of
Theorem 2, adding or removing edges between nodes in the
same set will not affect the herdability of the system in (1)
by the selected leaders, as long as the structural balance is
preserved.

IV. HERDABILITY OF WEAKLY BALANCED NETWORKS

This section considers the herdability of a class of special
signed graphs, namely weakly balanced signed graphs.

Definition 3 (Weakly Balanced Graphs [35]). A signed graph
G = (V, E ,A) is weak-balanced if the node set V can be
partitioned such that V1 ∪ V2 . . .∪ Vk = V and Vi ∩ Vj = ∅,
i 6= j , and i, j ∈ {1, 2 . . . , k}. The edge weight aij > 0 if
vi, vj ∈ Vq , q ∈ {1, 2 . . . , k}, and aij < 0 if vi ∈ Vq and
vj ∈ Vr, q 6= r, and q, r ∈ {1, 2 . . . , k}.

Suppose there are m leaders in total and each Vi, i ∈
{1, 2 . . . , k}, contains a leader group V ′i ⊂ Vi such that
|V ′i| = mi and

∑k
i=1mi = m. Let P abij , i ∈{1, . . . ,m},

j ∈ {m+ 1, . . . , n}, a, b ∈ {1, 2 . . . , k}, denote the distance
from a leader vi in Va to a follower vj in Vb. The shortest
distance from the leader group in Va to a follower vj in
Vb is defined as P abj = min

{
P abij , vi ∈V ′a

}
. Similarly, let

P̄ abj = max
{
P abij , vi ∈V ′a

}
denote the longest distance from

the leader group in Va to a follower vj in Vb.
The following theorem presents how the leader group

can be identified to ensure herdability of weakly balanced
networks.

Theorem 3. Consider a leader-follower system in (1) evolv-
ing over a connected weakly balanced signed graph G. The
system in (1) is herdable, if P̄ aaj < P baj , ∀a, b ∈ {1, . . . , k},
is satisfied for any leader set within Vb and any follower vj
within Va.

Proof: For each Va, a ∈ {1, . . . , k}, suppose
there are ma leaders and fa followers. Let ρa =
max

{
P̄ aaj , vj ∈ Va \ V ′a

}
denote the maximum distance

among all followers to the leader group within Va. The
system controllability matrix C can be written as

C =


Im×m ∗ ∗
0f1×m Λ1 ...

...
... ...

0fk×m Λk ...

 , (5)

where Λa ∈ Rfa×ρam is in the form of

Λa =


Λn1

a×m ∗ ∗ ∗ · · ·
0 Λn2

a×m ∗ ∗ · · ·

0 0
. . . · · · · · ·

0 0 0 Λnρaa ×m · · ·

 , (6)

where nja, j ∈ {1, . . . , ρa}, is the number of followers
in Va j-walk away from the leader group in Va. Note
that the term Λn1

a×m can be further decomposed into[
Λn1

a×m1
· · · Λn1

a×ma · · · Λn1
a×mk

]
, in which the

non-zero entries of Λn1
a×ma are positive and the entries of

Λn1
a×ms for all s 6= a are zeros. This is due to the fact that

P̄ aaj < P baj , which indicates the followers are closer to the
leaders in the same set Va than the leaders in Vs, s 6= a.
Following similar argument, it can be shown that non-zero
entries of Λnsa×m, s = 1, . . . , ρa, as well as the non-zero
entries of Λa, a = 1, . . . , k, are all positive.

By Lemma 1, we need to show the existence of a vector
δ =

[
δ1 . . . δnm

]T ∈ Rnm such that k = Cδ ∈ Rn
is element-wise positive. Due to the identity matrix Im×m ,
there always exist sufficiently large δi ∈ R+, i = 1, ...m
, such that the first m entries of k are positive. Based on
the analysis above, there also exist proper design of δi ∈
R+, i = m + 1, ...mn, such that the rest entries of k are
positive. Hence, the system in (1) is herdable.

In Theorem 3, P̄ aaj denotes the longest distance from
the follower vj in Va to its own leader group in Va, and
P baj denotes shortest distance from the follower vj in Va to
the leader group in Va. Thus, Theorem 3 indicates that the
system in (1) is herdable by the selected leaders, if within
any partitioned set the follower is closer (in terms of graph
walks) to the leaders in the same partitioned set than to the
leaders in other partitioned sets. To illustrate the developed
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Figure 3. An example of leader group selection for herdability of weakly
balanced signed graph, where the selected leaders are marked as solid nodes.

leader selection rule in Theorem 3, the following example is
provided.

Example 3. Consider a weakly balanced signed network G
with the partitioned sets V1 = {v1, v2, v3, v4}, V2 = {v5, v6}
and V3 = {v7, v8, v9}. Following the leader selection rules
in Theorem 3, Fig. 3 shows a herdable network where the
leader group is selected as Vl = {v1, v6, v8, v9}. It can be
verified that the followers in Vi, i ∈ {1, 2, 3}, is closer to
the leaders in Vi than to the leaders in Vj , j 6= i.

V. CONCLUSION

This work investigates leader selection algorithms for the
herdability of structurally balanced signed graphs. Future
research will consider extending current results to more
general signed networks, such as structurally unbalanced
graphs. Additional research will also consider optimal leader
group selection, e.g., minimizing the size of the leader group.
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